Using the improved Petrov–Galerkin elementsk−0for solving nonlinear Hammerstein–Fredholm integral equations
نویسندگان
چکیده
منابع مشابه
SOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS
In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...
متن کاملWilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملAn Improved Numerical Method for Solving Nonlinear Volterra-Fredholm Integral Equations Using Hybrid Functions
This paper presents an effective numerical method for solving a class of nonlinear VolterraFredholm integral equations by using the hybrid functions of Legendre polynomials and block-pulse functions. The proposed method which differs with previous approaches, attemp ts to use the exact forms of known functions in solving the integral equation. So its accuracy appropriately increases and the com...
متن کاملsolving nonlinear two-dimensional volterra integral equations of the first-kind using bivariate shifted legendre functions
in this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear volterra integral equations of the first-kind is proposed. this problem is transformedto a nonlinear two-dimensional volterra integral equation of the second-kind. the properties ofthe bivariate shifted legendre functions are presented. the operational matrices of integrationtogether with the produ...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2014.01.028